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EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES

Powerful experimental methods have been developed for the determina-
tion of Fermi surfaces. The methods include magnetoresistance, anomalous
skin effect, cyclotron resonance, magneto-acoustic geometric effects, the Shub-
nikow-de Haas effect, and the de Haas-van Alphen effect. Further information
on the momentum distribution is given by positron annihilation, Compton scat-
tering, and the Kohn effect.

We propose to study one method rather thoroughly. All the methods are
useful, but all need detailed theoretical analysis and are not for beginners. We
select the de Haas-van Alphen effect because it exhibits very well the charac-

teristic periodicity in 1/B of the properties of a metal in a uniform magnetic

field.



Quantization of Orbits in a Magnetic Field

The momentum p of a particle in a magnetic field is the sum (Appendix G)
of two parts, the kinetic momentum py;, = mv = fik and the potential momen-
tum or field momentum pgaq = gA/c, where q is the charge. The vector poten-
tial is related to the magnetic field by B = curl A. The total momentum is

(CGS) P = Pkin T Prieta = itk + qA/c . (22)

In SI the factor ¢! is omitted.

Following the semiclassical approach of Onsager and Lifshitz, we assume
that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld
relation

ép-dr=(n+‘y)27rﬁ ; (23)

when n is an integer and v is a phase correction that for free electrons has the
value 3. Then

ép-dr=¢ﬁk~dr+%§A'dr. (24)



The equation of motion of a particle of charge g in a magnetic field is
A—=———xB . (25a)
We integrate with respect to time to give

ﬁk=irXB ,
C

apart from an additive constant which does not contribute to the final result.
Thus one of the path integrals in (24) is

fﬁﬁk-dr=i§pr-dr=—iB-§rxdr=——zi(D, (25b)
c c c

where @ is the magnetic flux contained within the orbit in real space. We have
used the geometrical result that

§ r x dr = 2 X (area enclosed by the orbit) .



The other path integral in (24) is

ifﬁA-dFifcurlA-da:ifB-da=i<1>, (25¢)
c c G ¢

by the Stokes theorem; here do is the area element in real space. The momen-
tum path integral is the sum of (25b) and (25c¢):

%p-dr=—%fb=(n+'y)2wﬁ. (26)

It follows that the orbit of an electron is quantized in such a way that the
flux through it is

D, = (n + y)2whcle) . (27)
The flux unit 27fic/e = 4.14 X 1077 gauss cm? or T m?.




In the de Haas-van Alphen effect discussed below we need the area of the
orbit in wavevector space. We obtained in (27) the flux through the orbit in real
space. By (25a) we know that a line element Ar in the plane normal to B is
related to Ak by|Ar = (Aic/eB) Ak,|so that the area S, in k space is related to the

area A,, of the orbit in r space by

A, = (hcleB)?S,, . (28)
It follows that O =AB
% 857 Eq. (27) 5 T
D, = (——) — S, = +v) , (29)
e B e

from (27), whence the area of an orbit in k space will satisfy

27e
S,=(n+ 1y ;:B . (30)




In Fermi surface experiments we may be interested in the increment AB
for which two successive orbits, n and n + 1, have the same area in k space on
the Fermi surface. The areas are equal when

From eq. 31 S< - ) - T2 (31)
. Bn+1 Bn hc ’

from (30). We have the important result that equal increments of 1/B reproduce

similar orbits—this periodicity in 1/B is a striking feature of the magneto-

oscillatory effects in metals at low temperatures: resistivity, susceptibility,

heat capacity.

The population of orbits on or near the Fermi surface oscillates as B is
varied, causing a wide variety of effects. From the period of the oscillation we
reconstruct the Fermi surface. The result (30) is independent of the gauge of
the vector potential used in the expression (22) for momentum; that is, p is not

gauge invariant, but S, is. Gauge invariance is discussed further in Chapter 12
and in Appendix G.



De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment of
a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields: we
do not want the quantization of the electron orbits to be blurred by collisions,
and we do not want the population oscillations to be averaged out by thermal
population of adjacent orbits.

The analysis of the dHvA effect is given for absolute zero in Fig. 23. The
electron spin is neglected. The treatment is given for a two-dimensional (2D)
system; in 3D we need only multiply the 2D wavefunction by plane wave fac-
tors exp(ik,z), where the magnetic field is parallel to the z axis. The area of an
orbit in k., k, space is quantized as in (30). The area between successive or-
bits is

From eq. (30) AS =S, —S,-1 = 2meBlhc . (32)
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Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimensions
in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are shaded
in a and d. The energy levels in a magnetic field are shown in b, ¢, and e. In b the field has a value
B, such that the total energy of the electrons is the same as in the absence of a magnetic field: as
many electrons have their energy raised as lowered by the orbital quantization in the magnetic field
B,. When we increase the field to B, the total electron energy is increased, because the uppermost
electrons have their energy raised. In e for field B; the energy is again equal to that for the field
B = 0. The total energy is a minimum at points such as B,, Ba, Bs, . . . , and a maximum near
points such as Bo, By, . . . .




The area in k space occupied by a single orbital is (27/L)*, neglecting spin,

for a square specimen of side L. Using (32) we find that the number of free

electron orbitals that coalesce in a single magnetic level is

D = (2meB/tc)(L/I2w)* = pB (33)

where p = eL?/27hc, as in Fig. 24. Such a magnetic level is called a Landau

level.

The dependence of the Fermi level on B is dramatic. For a system of N
electrons at absolute zero the Landau levels are entirely filled up to a magnetic
quantum number we identify by s, where s is a positive integer. Orbitals at the
next higher level s + 1 will be partly filled to the extent needed to accommo-
date the electrons. The Fermi level will lie in the Landau level s + 1 if there

are electrons in this level; as the magnetic field is increased the electrons move
to lower levels. When s + 1 is vacated, the Fermi level moves down abruptly to
the next lower level s.




(a

Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as restricted
to circles in the former k., plane. The successive circles correspond to successive values of the
quantum number n in the energy (n — $)kw,.. The area between successive circles is

(CGS) wA(k?) = 2mwk(Ak) = (2mm/h2) Ae = 2mmw /h=2meBlhic ,

o, = eB/m*c
The angular position of the points has no significance. The number of orbitals on a circle is constant

and is equal to the area between successive circles times the number of orbitals per unit area in (a),
or (2meB/fc)(L/2m)? = L%eB/2mhc, neglecting electron spin.




The electron transfer to lower Landau levels can occur because their de-
generacy D increases as B is increased, as shown in Fig. 25. As B is increased
there occur values of B at which the quantum number of the uppermost filled

level decreases abruptly by unity. At the critical magnetic fields labeled B, no
level is partly occupied at absolute zero, so that

spB;, = N . (34)

The number of filled levels times the degeneracy at B, must equal the number
of electrons N.

To show the periodicity of the energy as B is varied, we use the result that
the energy of the Landau level of magnetic quantum number n is E, =
(n — $)hw,, where w, = eB/m*c is the cyclotron frequency. The result for E,
follows from the analogy between the cyclotron resonance orbits and the simple

harmonic oscillator, but now we have found it convenient to start counting at
n = 1 instead of at n = 0.
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Figure 25 (a) The heavy line gives the number of particles in levels which are completely occupied
in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded area
gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B = 40 we have s = 2: the levels

n = 1 and n = 2 are filled and there are 1Q particles in the level n = 3. At B = 50 the level n = 3 is

empty. (b) The periodicity in 1/B is evidé*]t when the same points are plotted against 1/B.

s=2,D=40;
s=3,N;=50-40=10



The total energy of the electrons in levels that are fully occupied is

D=pB >, Dhwyn — %) = $Dhw,s® , (35)

n=1

where D is the number of electrons in each level. The total energy of the

electrons in the partly occupied level s + 1 is
fiw(s + 3)(N — sD) , (36)

where sD is the number of electrons in the lower filled levels. The total energy
of the N electrons is the sum of (35) and (36), as in Fig. 26.

The magnetic moment w of a system at absolute zero is given by u =

—aU/3dB. The moment here is an oscillatory function of 1/B. Fig. 27. This oscil-

latory magnetic moment of the Fermi gas at low temperatures is the de Haas-
van Alphen effect. From (31) we see that the oscillations occur at equal intervals

of 1/B such that

1 27re
(L) -2 .
B ficS (37)
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Figure 26 The upper curve is the total electronic energy versus 1/B. The oscillations in the energy

U may be detected by measurement of the magnetic moment, given by —dU/dB. The thermal and
transport properties of the metal also oscillate as successive orbital levels cut through the Fermi
level when the field is increased. The shaded region in the figure gives the contribution to the
energy from levels that are only partly filled. The parameters for the figure are the same as for
Fig. 25, and we have taken the units of B such that B = fw,.
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Figure 27 At absolute zero the magnetic moment is given by —dU/dB. The energy plotted in
Fig. 26 leads to the magnetic moment shown here, an oscillatory function of 1/B. In impure
specimens the oscillations are smudged out in part because the energy levels are no longer sharply
defined.




where S is the extremal area (see below) of the Fermi surface normal to the
direction of B. From measurements of A(1/B), we deduce the corresponding
extremal areas S; thereby much can be inferred about the shape and size of the
Fermi surface.

Extremal Orbits. One point in the interpretation of the dHvA effect is
subtle. For a Fermi surface of general shape the sections at different values of
kg will have different periods. The response will be the sum of contributions
from all sections or all orbits. But the dominant response of the system comes
from orbits whose periods are stationary with respect to small changes in kg.
Such orbits are called extremal orbits. Thus in Fig. 28 the section AA’ domi-

nates the observed cyclotron period.

The argument can be put in mathematical form, but we do not give the
proof here (QTS, p. 223; Ziman, p. 322). Essentially it is a question of phase
cancellation: the contributions of different nonextremal orbits cancel, but near
the extrema the phase varies only slowly and there is a net signal from these
orbits. Sharp resonances are obtained even from complicated Fermi surfaces

because the experiment selects the extremal orbits.
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Figure 28 The orbits in the section AA’ are extremal
orbits: the cyclotron period is roughly constant over a
reasonable section of the Fermi surface. Other sections
such as BB’ have orbits that vary in period along the
section.



Fermi Surface of Copper. The Fermi surface of copper is distinctly non-
spherical: eight necks make contact with the hexagonal faces of the first Bril-
louin zone of the fcc lattice. The electron concentration in a monovalent metal
with an fcc structure is n = 4/a>: there are four electrons in a cube of volume a®.

The radius of a free electron Fermi sphere is
kp = 372n)Y3 = (127%a%)"3 = (4.90/a) | (38)
and the diameter is 9.80/a.

The shortest distance across the Brillouin zone (the distance between hex-
agonal faces) is (27/a)(3)Y? = 10.88/a, somewhat larger than the diameter of the
free electron sphere. The sphere does not touch the zone boundary, but we
know that the presence of a zone boundary tends to lower the band energy near
the boundary. Thus it is plausible that the Fermi surface should neck out to
meet the closest (hexagonal) faces of the zone (Figs. 18 and 29).

The square faces of the zone are more distant, with separation 12.57/a, and
the Fermi surface does not neck out to meet these faces.



Figure 29 Fermi surface of copper, after Pippard. The
Brillouin zone of the fce structure is the truncated octa-
hedron derived in Chapter 2. The Fermi surface makes
contact with the boundary at the center of the hexagonal
faces of the zone, in the [111] directions in k space. Two
“belly” extremal orbits are shown, denoted by B; the

extremal “neck” orbit is denoted by N.

Figure 30 Dog’s bone orbit of an electron on the
Fermi surface of copper or gold in a magnetic
field. This orbit is classified as holelike because

the energy increases toward the interior of the
orbit.
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Figure 31 De Haas-van Alphen effect in gold with B || [110]. The oscillation is from the dog’s
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with
respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)



EXAMPLE: Fermi Surface of Gold. In gold for quite a wide range of field directions
Shoenberg finds the magnetic moment has a period of 2 X 107° gauss™!. This period
corresponds to an extremal orbit of area

_ 2melfic _ 9.55 X 107 _

§ = ~ ~ 4.8 % 10 cm™2 .
AQ/B) 2% 1079 e

From Table 6.1, we have kp = 1.2 X 10% cm ™! for a free electron Fermi sphere for gold,

or an extremal area of 4.5 X 10'® cm ™2

, in general agreement with the experimental
value. The actual periods reported by Shoenberg are 2.05 X 10~° gauss ™! for the orbit
Byq; of Fig. 28 and 1.95 X 10~° gauss ! for B,go. In the [111] direction in Au a large
period of 6 X 1078 gauss™! is also found; the corresponding orbital area is 1.6 X
10'3 ecm~2. This is the “neck” orbit N. Another extremal orbit, the “dog’s bone,” is

shown in Fig. 30; its area in Au is about 0.4 of the belly area. Experimental results are

shown in Fig. 31. To do the example in SI, drop ¢ from the relation for S and use as the
period 2 X 107° tesla™.




The free electron Fermi sphere of aluminum fills the first zone entirely
and has a large overlap into the second and third zones, Fig. 1. The third zone
Fermi surface is quite complicated, even though it is just made up of certain
pieces of the surface of the free electron sphere. The free electron model also
gives small pockets of holes in the fourth zone, but when the lattice potential is
taken into account these empty out, the electrons being added to the third
zone. The general features of the predicted Fermi surface of aluminum are
quite well verified by experiment. Figure 32 shows part of the free electron
Fermi surface of magnesium.

Figure 32 Multiply-connected hole surface of
magnesium in bands 1 and 2, according to
L. M. Falicov. (Drawing by Marta Puebla.)




Magnetic Breakdown. Electrons in sufficiently high magnetic fields will
move in free particle orbits, the circular cyclotron orbits of Fig. 33a. Here the
magnetic forces are dominant, and the lattice potential is a slight perturbation.
In this limit the classification of the orbitals into bands may have little impor-
tance. However, we know that at low magnetic fields the motion is described

by (8.7) with the band structure € that obtains in the absence of a magnetic

field.
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Figure 33 Breakdown of band structure by a strong magnetic field. Brillouin zone boundaries are

the light lines. The free electron orbits (a) in a strong field change connectivity in a weak field (b) to
become open orbits in the first band and electron orbits in the second band. Both bands are

mapped together.




The eventual breakdown of this description as the magnetic field is in-
creased is called magnetic breakdown.? The passage to strong magnetic fields
may drastically change the connectivity of the orbits, as in the figure. The onset
of magnetic breakdown will be revealed by physical properties such as mag-
netoresistance that depend sensitively on the connectivity.

The condition for magnetic breakdown is that fiw.€x > EZ, approximately.

Here €p is the free electron Fermi energy and E, is the energy gap. This

condition is much milder, especially in metals with small gaps, than the naive
condition that the magnetic splitting Aw, exceed the gap.

Small gaps may be found in hep metals where the gap across the hexagonal
face of the zone would be zero except for a small splitting introduced by the
spin-orbit interaction. In Mg the splitting is of the order of 1072 eV for this gap
and €r ~ 10 eV the breakdown condition is Aw, > 107> eV, or B > 1000 G.



